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Classical density functional theory of freezing in simple fluids: Numerically induced false solutions
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Density functional theoryDFT) has provided many insights into the freezing of simple fluids. Several
analytical and numerical solution have shown that the DFT provides an accurate description of freezing of hard
spheres and their mixtures. Compared to other techniques, numerical, grid-based algorithms for solving the
DFT equations have more variational freedom and are capable of describing subtle behavior, as that seen in
mixtures with multipeaked density profiles. However the grid-based approach is sensitive to the coarseness of
the mesh employed. Here we summarize how the granularity of the mesh affects the freezing point within the
DFT. For coarse meshes, we show that the freezing point is masked by numerically induced false minima of
the DFT grand potential. These false minima are removed when a fine enough grid is used to represent properly
the density profiles. Our results suggest that others using such grid-based methods have focused on such
numerical artifacts that have little to do with real phenomena.
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Recently, we have shown that the additional variationalpotential energy is most easily expressed as finite sum in real
freedom offered by refined grid-based solutions of the liquid-space. The excess grand potertibé last term of Eq(1)] is
solid freezing point within density functional theo(pFT) also a finite sum, albeit in Fourier space. The last term is
for binary hard(or soff) spheres lead to neywnultipeaked  handled in this manner due to computational efficiency and,
density distribution$1]. Our results show that the often used in the case of hard spheres, overcoming the problems
Gaussian or plane-wave densities are an inadequate basistimught on by the discontinuity in the direct correlation func-
solve the general freezing problem in mixed sphere systemon (DCF) in real spac¢l]. The DCFC, is the value at the
[1]. Nonetheless, we show here that care also must be takenidpoint of any small cell in Fourier space whererN/L
when using grid-based methods because they can lead toq,<aw(N—1)/L, which is consistent with the finite grid
false (numerically inducepiminima in the DFT grand poten- size. Here we are interested in solutions corresponding to the
tial. Besides revealing the different minima obtained withliquid-to-solid transition. Thus, we look for a solution that is
finer grids than typically used, these calculations show thaperiodic and is given by simple unit cells with the usual
the separation between adjacent grid points must be smallgeriodic boundary conditions. A similar method has been
than the operative Lindemann parameter to obtain solutionased to study crystal-fluid interfaces in hard spheres and
that reflect the continuum limit. Lennard-Jones systerh3] and glassy states in hard spheres

Although the results given here should reflect generic bef4].
havior, we show the effect only for a discrete version of the For each reference density and each lattice constaht
Ramakrishnan and Yussouff density functional theorywe minimized the grand potential difference iteratively using
(RY-DFT) [2]. Within the RY-DFT, the grand potential dif- the method of steepest descésge Ref[1] for detailg,
ference() — ), between the inhomogeneous and homoge-

neous fluid[with densitiesp(r) and p,, respectively is ) B =)
) b pi =pi— At——r, 2
given by ap;
Pi ’ . i -
B(Q—Qo)zvoz piIn —I—(Pi—Po)} V\{herepI anqpI are the new gnd o_Id values.of the site den
i Po sity, respectively. The step siz&t is an arbitrary number
5 chosen to be small enough such that we obtain convergence,
_ @E CohpAp (1) yet not too small to be computationally inefficient. With this
24 Tt method, we calculate stableée., (2 —Q,)=<0) or meta-

stable structures of the underlying crystal. The minimum
whereAp=p—p, and B=(kgT) ' is inverse temperature. where 8(Q—Q,)=0 represents the coexistence of the two
We divide the cubic unit cell of volumé? into N® small  phases. Thus the locus of such minima determines the phase
subcells of volume3, with a,=L/N andvy=a3. In each of  diagram.
these small subcells, denoted hywe denote th€average In our iterative procedure, the initial density is chosen
density to bep; . The index in the first sum of Eq1) is over  close to the equilibrium structures that are expected to form.
all cells, while in the second sum the index refers to allFor example, we expect the fcc solution for hard spheres, and
allowed values in reciprocal space, and whég, is the  we define the initial density distribution to be&function
spatial Fourier transform akp. The ideal part of the grand positioned at each site of the fcc lattice. Thus, only ghat
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the four sites of the fcc unit cell are set to be nonzero. The 0.180 0.184 0-188 0192 0196 N-3
. . . L . + b + } t L/No
grand potential difference is now minimized with respect to 0.0% 0092 .00 0.096 0098 Ne16

the lattice constant for different liquid densitiegp,, until
we find where the minimum that corresponds to the case i
B(QL—Qy) =0, the coexistence of the liquid and solid 1 '
phases. In this way we can obtain the density profile and -
lattice constant at coexistence. o 24
It is important to note that we are not doing a constrained &
minimization. We do not impose any relation between the
solid density and the lattice constant, so the perfect crystal i<
not necessarily a minimum of the grand potential. The only
constraints in our calculation are those imposed by the peri-
odic boundary conditions and tfieubic) unit cell shape that
we use(in general, of course, all of these may be varied
beyond what was used herdPreviously, we have detailed
the importance of having this increased variational freedom
in the representation of the density for binary mixtures of
hard (or soff) spheres. Specifically, we found significant de- ; o
viations in the density from Gaussidar plane-waveg solu- 1 o0 H N=8
tions due to the appearance of more stable multipeaked der \ /;’N=16
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sity profiles for the smaller size sphergld. This approach i \\
produced a rich phase diagram, which included an fcc solid- ] .
solution, NaCl and “sublattice melt” phases. 0.045 0.046 0047 0.048 0049 N=32
The granularity of the mesh is critical for the results to be -8 “4—~4—+—4——+—F—+——F—+—+ N0
meaningful. We found that the separation between adjacen. 0.0225 0.0230 0.0235 0.0240 00245 N=64
grid pointsa_o should be smaI_Ier than the s_pread of the pe_aks FIG. 1. Difference in the grand potentia{Q — Q) plotted as a
in the density. In the Gaussian method, it would be equivagnction of the fcc lattice constant for different mesh granulari-
lent to ag<<e, wheree is the Gaussian width. By way of e je., forN=8, 16, 32, and 64. Also shown, for eabhare the
example, folN=64 and with a lattice constant &f=1.50,  separations between adjacent grid poiatsz L/Ne in units of the
the grid size is5p~0.02r, and the spread of the Gaussian is hard sphere diameter.
€~0.040. In such a case, the grid size is small enough for us
to be confident in the numerical results.

minima—one being an artifact of the grid siag. For the
finest grids used, where the large cube is divided intd 64
RESULTS AND DISCUSSION (i.e.,N=64) blocks, two minima are found. The first minima
is located at a lattice constamt~1.510; the other atL
Our results are summarized in Fig. 1, where we show thé= 1-43 . The former corresponds to that found by Jones and
effect of the granularity in the calculations for freezing of Mohanty[6]. The latter is an artifact of the grid used, shift-
(single-component hard spheres. The calculation is per- iNg asN is varied; forN= 32, the artificial minimum occurs
formed within a cube of side with periodic boundary con- atL~1.460. ForN=8 andN= 16, no longer does the grand
ditions. The iterative procedure is started as described aboveotential difference exhibit two minima, but only a single,
and thusL becomes the fcc lattice constant when the approgrid-size dependertnonphysical minimum.
priate minimum is found. This large cube is broken into What is the origin of these false minifhdf one looks
small cubes with side/N defining the mesh. The difference closely at the densities that correspond to the “false”
in grand potentials has been explored as a function of latticeninima, one finds that the peaks in the density have no
constantL for four different grids corresponding to values of spread(for all N) and are contained within a single mesh
N=8, 16, 32, and 64 at a fixed density. At densitymf  point. Typically, a Gaussian representation of the density is
=0.9445, we show that the curves fbi=32 andN=64  thought to be reasonable for single-component spheres. At
have a common minimum for whicB(Q)—,)~0 and is these false minima, the grid sizg is larger than the Gauss-
located at.=1.5075. This value of corresponds to a near- ian width (or Lindemann parameterthe discrete method
est neighbor distance df/v2=1.06596, near which Jones fails to represent accurately the density. In particular, we find
and Mohanty[6] find that hard spheres freeze. Specifically, that a relatively fine mesh is necessary; values ef8 (with
Jones and Mohanty found a valuemjf=0.9461 with a near- ay~0.19) or N=16 (with ay~0.0%) are insufficient as
est neighbor distant of 1.0647 and with a Lindemman paramadjacent grid points are separated by distances larger than the
eter of 0.048, which is of the order ofor smaller thapthe  expected Lindemann parameter Gaussian width0.04 o.
grid granularity forN= 32 at the freezing density. We note that in other casés.g., mixtureqg1]) the Gaussian
In the figure, we show that the calculated grand potentiatepresentation may also fail to describe the density. Thus, in
differences have minima that are strongly dependent upoall cases, the grid-based approach can accurately and reliably
the granularity of the grid. For particular grids, we find two describe the density profilggncluding multiple peaksand
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physical minima if care is taken in the choice of the grid physical behavior that have affected works of others. We
granularity. have shown that unbiased numerical solution of the Ra-
In the past, Dasgupfa], and Dasgupta and Vall§] have  makrishnan and Yussouff density functional the$®y for
exploited grid-based methods to study the formation offreezing can provide accurate solutions, but care must be
glasses and the grand potential landscape in singleaken to test the grid granularity needed for a sufficient rep-
component hard spheres. However, they used grids such thadsentation of the densities. Any structure of the density
peaks in the densities were contained within a single meSQhould extend over several grid elemefits., the Lindem-

point. The results shown in this paper cast doubt on theip,an parameter must be greater than the separation of adacent
results. Their solutions found for amorphous soligisen by points on the gritl

a minimum in the grand potentjainay be simply artifacts of
the coarseness of the mesh used, and the resulting poor rep-This research was supported by the National Science
resentation of the density. Foundation Grant No. DMR-95312284.V. and F.J.B, the

To summarize, in this paper we have explored the numerd.S. Department of Energy Grant Nos. DE-FGO02-
ics of grid-based DFT solutions describing freezing in single-96ER45439 with Frederick Seitz Materials Research Labo-
component systems, and have uncovered artifacts and uratory and by DE-AC04-94AL85000 with Sandi.D.J).
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