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Classical density functional theory of freezing in simple fluids: Numerically induced false solutions
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Density functional theory~DFT! has provided many insights into the freezing of simple fluids. Several
analytical and numerical solution have shown that the DFT provides an accurate description of freezing of hard
spheres and their mixtures. Compared to other techniques, numerical, grid-based algorithms for solving the
DFT equations have more variational freedom and are capable of describing subtle behavior, as that seen in
mixtures with multipeaked density profiles. However the grid-based approach is sensitive to the coarseness of
the mesh employed. Here we summarize how the granularity of the mesh affects the freezing point within the
DFT. For coarse meshes, we show that the freezing point is masked by numerically induced false minima of
the DFT grand potential. These false minima are removed when a fine enough grid is used to represent properly
the density profiles. Our results suggest that others using such grid-based methods have focused on such
numerical artifacts that have little to do with real phenomena.
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Recently, we have shown that the additional variatio
freedom offered by refined grid-based solutions of the liqu
solid freezing point within density functional theory~DFT!
for binary hard~or soft! spheres lead to new~multipeaked!
density distributions@1#. Our results show that the often use
Gaussian or plane-wave densities are an inadequate ba
solve the general freezing problem in mixed sphere syst
@1#. Nonetheless, we show here that care also must be t
when using grid-based methods because they can lea
false~numerically induced! minima in the DFT grand poten
tial. Besides revealing the different minima obtained w
finer grids than typically used, these calculations show t
the separation between adjacent grid points must be sm
than the operative Lindemann parameter to obtain solut
that reflect the continuum limit.

Although the results given here should reflect generic
havior, we show the effect only for a discrete version of t
Ramakrishnan and Yussouff density functional theo
~RY-DFT! @2#. Within the RY-DFT, the grand potential dif
ferenceV2V0 between the inhomogeneous and homo
neous fluid @with densitiesr(r ) and r0, respectively# is
given by

b~V2V0!5v0(
i

Fr i ln
r i

r0
2~r i2r0!G

2
v0

2

2 (
q

CqDrqDr2q , ~1!

whereDr5r2r0 and b5(kBT)21 is inverse temperature
We divide the cubic unit cell of volumeL3 into N3 small
subcells of volumea0

3, with a05L/N andv05a0
3. In each of

these small subcells, denoted byi, we denote the~average!
density to ber i . The index in the first sum of Eq.~1! is over
all cells, while in the second sum the index refers to
allowed values in reciprocal space, and whereDrq is the
spatial Fourier transform ofDr. The ideal part of the grand
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l
-

to
s

en
to

at
ler
s

-
e
y

-

ll

potential energy is most easily expressed as finite sum in
space. The excess grand potential@the last term of Eq.~1!# is
also a finite sum, albeit in Fourier space. The last term
handled in this manner due to computational efficiency a
in the case of hard spheres, overcoming the proble
brought on by the discontinuity in the direct correlation fun
tion ~DCF! in real space@1#. The DCFCq is the value at the
midpoint of any small cell in Fourier space where2pN/L
,qx,p(N21)/L, which is consistent with the finite grid
size. Here we are interested in solutions corresponding to
liquid-to-solid transition. Thus, we look for a solution that
periodic and is given by simple unit cells with the usu
periodic boundary conditions. A similar method has be
used to study crystal-fluid interfaces in hard spheres
Lennard-Jones systems@3# and glassy states in hard spher
@4#.

For each reference densityr0 and each lattice constantL,
we minimized the grand potential difference iteratively usi
the method of steepest descent~see Ref.@1# for details!,

r i85r i2Dt
]b~V2V0!

]r i
, ~2!

wherer i8 andr i are the new and old values of the site de
sity, respectively. The step sizeDt is an arbitrary number
chosen to be small enough such that we obtain converge
yet not too small to be computationally inefficient. With th
method, we calculate stable~i.e., b(V2V0)<0! or meta-
stable structures of the underlying crystal. The minimu
whereb(V2V0)50 represents the coexistence of the tw
phases. Thus the locus of such minima determines the p
diagram.

In our iterative procedure, the initial density is chos
close to the equilibrium structures that are expected to fo
For example, we expect the fcc solution for hard spheres,
we define the initial density distribution to be ad function
positioned at each site of the fcc lattice. Thus, only ther i at
©2001 The American Physical Society01-1
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the four sites of the fcc unit cell are set to be nonzero. T
grand potential difference is now minimized with respect
the lattice constantL for different liquid densitiesr0 , until
we find where the minimum that corresponds to the c
b(V2V0)50, the coexistence of the liquid and sol
phases. In this way we can obtain the density profile a
lattice constant at coexistence.

It is important to note that we are not doing a constrain
minimization. We do not impose any relation between
solid density and the lattice constant, so the perfect cryst
not necessarily a minimum of the grand potential. The o
constraints in our calculation are those imposed by the p
odic boundary conditions and the~cubic! unit cell shape that
we use~in general, of course, all of these may be vari
beyond what was used here!. Previously, we have detaile
the importance of having this increased variational freed
in the representation of the density for binary mixtures
hard ~or soft! spheres. Specifically, we found significant d
viations in the density from Gaussian~or plane-wave! solu-
tions due to the appearance of more stable multipeaked
sity profiles for the smaller size spheres@1#. This approach
produced a rich phase diagram, which included an fcc so
solution, NaCl and ‘‘sublattice melt’’ phases.

The granularity of the mesh is critical for the results to
meaningful. We found that the separation between adja
grid pointsa0 should be smaller than the spread of the pe
in the density. In the Gaussian method, it would be equi
lent to a0,e, where e is the Gaussian width. By way o
example, forN564 and with a lattice constant ofL51.5s,
the grid size isa0'0.02s, and the spread of the Gaussian
e'0.04s. In such a case, the grid size is small enough for
to be confident in the numerical results.

RESULTS AND DISCUSSION

Our results are summarized in Fig. 1, where we show
effect of the granularity in the calculations for freezing
~single-component! hard spheres. The calculation is pe
formed within a cube of sideL with periodic boundary con-
ditions. The iterative procedure is started as described ab
and thusL becomes the fcc lattice constant when the app
priate minimum is found. This large cube is broken in
small cubes with sideL/N defining the mesh. The differenc
in grand potentials has been explored as a function of lat
constantL for four different grids corresponding to values
N58, 16, 32, and 64 at a fixed density. At density ofr0
50.9445, we show that the curves forN532 andN564
have a common minimum for whichb(V2V0)'0 and is
located atL51.5075. This value ofL corresponds to a near
est neighbor distance ofL/&51.065 96, near which Jone
and Mohanty@6# find that hard spheres freeze. Specifica
Jones and Mohanty found a value ofr050.9461 with a near-
est neighbor distant of 1.0647 and with a Lindemman para
eter of 0.048s, which is of the order of~or smaller than! the
grid granularity forN532 at the freezing density.

In the figure, we show that the calculated grand poten
differences have minima that are strongly dependent u
the granularity of the grid. For particular grids, we find tw
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minima—one being an artifact of the grid sizea0 . For the
finest grids used, where the large cube is divided into3

~i.e.,N564! blocks, two minima are found. The first minim
is located at a lattice constantL'1.51s; the other atL
'1.43s. The former corresponds to that found by Jones a
Mohanty @6#. The latter is an artifact of the grid used, shif
ing asN is varied; forN532, the artificial minimum occurs
at L'1.46s. ForN58 andN516, no longer does the gran
potential difference exhibit two minima, but only a singl
grid-size dependent~nonphysical! minimum.

What is the origin of these false minima? If one looks
closely at the densities that correspond to the ‘‘fals
minima, one finds that the peaks in the density have
spread~for all N! and are contained within a single mes
point. Typically, a Gaussian representation of the density
thought to be reasonable for single-component spheres
these false minima, the grid sizea0 is larger than the Gauss
ian width ~or Lindemann parameter!—the discrete method
fails to represent accurately the density. In particular, we fi
that a relatively fine mesh is necessary; values ofN58 ~with
a0'0.19s! or N516 ~with a0'0.09s! are insufficient as
adjacent grid points are separated by distances larger tha
expected Lindemann parameter~or Gaussian width! 0.04 s.
We note that in other cases~e.g., mixtures@1#! the Gaussian
representation may also fail to describe the density. Thus
all cases, the grid-based approach can accurately and rel
describe the density profiles~including multiple peaks! and

FIG. 1. Difference in the grand potentialb(V2V0) plotted as a
function of the fcc lattice constantL for different mesh granulari-
ties, i.e., forN58, 16, 32, and 64. Also shown, for eachN, are the
separations between adjacent grid points,a05L/Ns in units of the
hard sphere diameters.
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physical minima if care is taken in the choice of the g
granularity.

In the past, Dasgupta@4#, and Dasgupta and Valls@5# have
exploited grid-based methods to study the formation
glasses and the grand potential landscape in sin
component hard spheres. However, they used grids such
peaks in the densities were contained within a single m
point. The results shown in this paper cast doubt on th
results. Their solutions found for amorphous solids~given by
a minimum in the grand potential! may be simply artifacts of
the coarseness of the mesh used, and the resulting poor
resentation of the density.

To summarize, in this paper we have explored the num
ics of grid-based DFT solutions describing freezing in sing
component systems, and have uncovered artifacts and
J
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physical behavior that have affected works of others.
have shown that unbiased numerical solution of the R
makrishnan and Yussouff density functional theory@2# for
freezing can provide accurate solutions, but care must
taken to test the grid granularity needed for a sufficient r
resentation of the densities. Any structure of the dens
should extend over several grid elements~i.e., the Lindem-
man parameter must be greater than the separation of ad
points on the grid!.
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